1-ALKYL-1,6-DIHYDRO-1-BENZAZOCINE DERIVATIVES THROUGH RING EXPANSION OF 1-ALKYL-1,4-DIHYDROOUINOLINES

P.G. Lehman

Research School of Chemistry, Australian National University, P.O. Box 4, Canberra ACT 2600, Australia

(Received in UK 14 September 1972; accepted for publication 26 October 1972)

Cyclic enamines react with electrophilic alkynes (non-concerted 1,2-cyclo-addition) to form cyclobutene adducts which undergo step-wise ring opening under mild thermal conditions to afford ring expanded dienamines.¹ Some heterocyclic enamines, e.g. 3-pyrrolidino-2,5-dihydrofuran² and 1-acety1-3-piperidinoindole³ and compounds which can apparently behave as such, e.g. 2-ethoxy-1-methylindole⁴ and 1-methylindole,⁵ react with dimethyl acetylenedicarboxylate (DMAD) to give ring expanded heterocyclic products. However, the cyclobutene adducts from certain 1,3-disubstituted-1,4-dihydropyridines and DMAD do not undergo thermal ring expansion.⁶

The cycloaddition of DMAD to 1-alky1-1,4-dihydroquinolines⁷ to form isolable cyclobutene adducts susceptible to thermal ring expansion, is now reported. This sequence (eqn. 1) constitutes a new and direct synthesis for derivatives of the 1,6-dihydro-1-benzazocine ring system.⁸

Reaction of 1-methyl-1,4-dihydroquinoline⁷ (I, R = Me) with DMAD (1 mole) in acetonitrile under nitrogen followed by chromatography on alumina gave the cyclobutene adduct (II, R = Me) m.p. 42.5-43°. This structure is supported by spectra: p.m.r. (100 MHz, CDCl₃, TMS) δ 7.22-6.63, m (4H) aromatic; 4.24, d (1H) H_Y; approx. 3.74, m (1H) H_X; 3.73, s (3H) OMe; 3.68, s (3H) OMe; 3.03, s (3H) NMe; 2.96, d of d (1H) H_A: 2.77, d of d (1H) H_B; J_{AX} = 3 Hz; J_{BX} = 5 Hz; J_{AB} = 15 Hz; J_{XY} = 5 Hz. Decoupling: irradiation of H_X caused the 8 line AB 4863 part of the ABX system to collapse to 4 lines. Simultaneously, the Hy doublet collapsed to a singlet. I.r. (nujol) 1690, 1625, 1593 cm⁻¹. U.v. (ethanol, λ_{max} nm, log ϵ) 290 (3.35), 246 (4.04), 232 (4.06).

Cyclobutene adduct (II, R = Me), obtained in the same way but not purified, was heated under reflux in dry benzene for 8 hr. Chromatography on alumina gave 1-methyl-3,4dicarbomethoxy-1,6-dihydro-1-benzazocine * (III, R = Me) as an oil, which crystallised (77.9%) in ether, m.p. 132-133°. P.m.r. (as above): δ 6.79, s (1H) H2; 7.30-6.82, m (5H) aromatic + H_{5} ; 3.91, br.d (2H) H_{6} , $J_{5,6}$ = 8 Hz; 3.64, s (3H) OMe; 3.61, s (3H) OMe; 3.41, s (3H) NMe. Decoupling: H₅ was obscured by the aromatic multiplet but was located (approx. δ 7.1) by irradiating the H₆ doublet. Irradiation of H₅ then resulted in the collapse of the H₆ doublet to a singlet. I.r. (nujol) 1708, 1690, 1630, 1600, 1590, 1570 cm⁻¹. U.v. (as above) 355 (3.67), 298 (3.96), 276 (4.18), 250 (4.16).

Dienamines of type (III) do not add DMAD but do give conjugate addition products resulting from nucleophilic attack at C5.

References

1	"Enamines, Synthesis, Structure and Reactions", Ed. A.G. Cook, Marcel Dekker,
	New York and London, 1969.
2	K.C. Brannock, R.D. Burpitt, V.W. Goodlet and J.C. Thweatt, <u>J.Org.Chem</u> ., <u>28</u> , 1464
	(1963)
3	M.S. Lin and V. Snieckus, J.Org.Chem., <u>36</u> , 645 (1971).
4	H. Plieninger and D. Wild, <u>Chem.Ber.</u> , <u>99</u> , 3070 (1966).
5	R.M. Acheson, J.N. Bridson and T.S. Cameron, J.C.S.Perkin I, 968 (1972).
6	R.M. Acheson and N.D. Wright, <u>Chem.Commun</u> ., 1421 (1971).
7	A.J. Birch and P.G. Lehman, manuscript in preparation.
8	R.M. Coates and E.F. Johnson, J.Amer.Chem.Soc., 93, 4016 (1971).

Satisfactory microanalysis obtained.